E-ISSN 2231-170X | ISSN 2231-1696
 

Original Article 


Molecular evolution of pathogenic bacteria based on rrsA gene

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan.

Abstract
Evolution of pathogens in prokaryotic bacteria was studied by 16srRNA genes. In this study rrsA genes of 45 bacteria were considered, which includes pathogens, non-pathogens and out- group bacteria. We considered non-pathogenic bacteria, for each class in bacterial classification, to support the pathogenic evolution. In this investigation, aligned nucleotide sequences of rrsA genes were used for Phylogenetic analysis and they have been clustered precisely. Maximum Likelihood (ML) and Maximum Parsimony (MP) methods were employed for the molecular evolution of pathogenic bacteria. The best-fit substitution model with the lowest Bayesian Information Criterion scores is considered to describe the substitution pattern the best, and non-uniformity of evolutionary rates among sites were modeled by using a discrete Gamma distribution. Nearest Neighbor Interchange (NNI) heuristic method was used to generate the tree for ML and Close Neighbor Interchange (CNI) on random trees search methods for MP. Further both the phylogenetic trees were statistically evaluated for accuracy by bootstrap value. Transition and transversion ratio of the rrsA genes have been estimated for the mutation frequency over the evolution by Maximum Composite Likelihood (MCL) bias and ML bias. Combined pathogenic and non pathogenic bacteria analysis reflected the clear diversity of bacteria over time and agrees with morphological and cytological data. These molecular evolution results should be useful to study the evolution pattern of pathogenic bacteria.

Key words: Phylogeny, Maximum Likelihood (ML), Maximum Parsimony (MP), rrsA gene, Transition transversion bias, Ribotyping


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Aravind Setti
Articles by T. A. Phazna Devi
Articles by Smita C. Pawar
Articles by G. Rajesh
Articles by S. Srikanth
Articles by S. Kalyan
on Google
on Google Scholar

REFERENCES
1. Salman V, Amann R, Girnth AC, Polerecky L, Bailey JV, Høgslund S, et al. A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiology 2011; 34(4):243-259. [DOI via Crossref]    [Pubmed]   
2. Ochman H, Elwyn S, Moran NA. Calibrating bacterial evolution. Proc Natl Acad Sci U S A 1999; 96(22):12638-12643. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
3. Buczolits S, Denner EB, Vybiral D, Wieser M, Kämpfer P, Busse H. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. IJSEM 2002; 52(2):445-456. [DOI via Crossref]   
4. Behe MJ. Experimental evolution, loss-of-function mutations, and "the first rule of adaptive evolution". Q Rev Biol 2010; 85(4):419-445. [DOI via Crossref]    [Pubmed]   
5. Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci USA 2011; 108(18): 7481-7486. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
6. Benítez-Páez A, Cárdenas-Brito S. Bioinformatics in Colombia: state of the art and perspectives. Biomedica 2010; 30(2):170-177. [DOI via Crossref]    [Pubmed]   
7. Koonin EV, Wolf YI. Constraints and plasticity in genome and molecular-phenome evolution. Nat Rev Genet 2010; 11(7):487-498. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
8. Muralidhara C, Gross AM, Gutell RR, Alter O. Tensor decomposition reveals concurrent evolutionary convergences and divergences and correlations with structural motifs in ribosomal RNA. PLoS One 2011; 6(4):e18768. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
9. Li X, Wang X, Yang H, Gao X, Cui Z. Application of gyrB in the identification of closely related bacteria-- a review. Wei Sheng Wu Xue Bao 2008; 48(5):701-706. [Pubmed]   
10. Glazunova OO, Raoult D, Roux V. Partial recN gene se-quencing: a new tool for identification and phylogeny within the genus Streptococcus. Int J Syst Evol Microbiol 2010; 60(9):2140-2148. [DOI via Crossref]    [Pubmed]   
11. Goyal K, Qamra R, Mande SC. Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol 2006; 63(6):781-787. [DOI via Crossref]    [Pubmed]   
12. Alexandre A, Laranjo M, Young JP, Oliveira S. dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 2008; 58(12):2839-2849. [DOI via Crossref]    [Pubmed]   
13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam, et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23(21): 2947-2948. [DOI via Crossref]    [Pubmed]   
14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser 1999; 41:95-98.
15. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. of Mol. Evolution 1980; 16:111-120. [DOI via Crossref]    [Pubmed]   
16. Nei M. and Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press, New York 2000. [PMC Free Fulltext]   
17. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39:783-791. [DOI via Crossref]   
18. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004;101(30):11030-11035. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
19. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Wang Q, et al. Structure and genetics of Shigella O antigens. FEMS Microbiol Rev 2008; 32(4):627-653. [DOI via Crossref]    [Pubmed]   
20. Ryan RP and Dow JM. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol 2011; 19(3):145-152. [DOI via Crossref]    [Pubmed]   

How to Cite this Article
Pubmed Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. Molecular evolution of pathogenic bacteria based on rrsA gene. J Med Allied Sci. 2012; 2(1): 12-18.


Web Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. Molecular evolution of pathogenic bacteria based on rrsA gene. https://jmas.in/?mno=210511 [Access: January 12, 2023].


AMA (American Medical Association) Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. Molecular evolution of pathogenic bacteria based on rrsA gene. J Med Allied Sci. 2012; 2(1): 12-18.



Vancouver/ICMJE Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. Molecular evolution of pathogenic bacteria based on rrsA gene. J Med Allied Sci. (2012), [cited January 12, 2023]; 2(1): 12-18.



Harvard Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan (2012) Molecular evolution of pathogenic bacteria based on rrsA gene. J Med Allied Sci, 2 (1), 12-18.



Turabian Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. 2012. Molecular evolution of pathogenic bacteria based on rrsA gene. Journal of Medical and Allied Sciences, 2 (1), 12-18.



Chicago Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. "Molecular evolution of pathogenic bacteria based on rrsA gene." Journal of Medical and Allied Sciences 2 (2012), 12-18.



MLA (The Modern Language Association) Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan. "Molecular evolution of pathogenic bacteria based on rrsA gene." Journal of Medical and Allied Sciences 2.1 (2012), 12-18. Print.



APA (American Psychological Association) Style

Aravind Setti, T. A. Phazna Devi, Smita C. Pawar, G. Rajesh, S. Srikanth, S. Kalyan (2012) Molecular evolution of pathogenic bacteria based on rrsA gene. Journal of Medical and Allied Sciences, 2 (1), 12-18.