E-ISSN 2231-170X | ISSN 2231-1696
 

Review Article 


Nanodiamond and its application to drug delivery

Eiji & 332;sawa, Dean Ho.

Abstract
Quasi-spherical diamond crystals having an average diameter of 3.7±0.6 nm are attracting much attention as an ideal material in carbon nanotechnology. In contrast to the other popular nanocarbons including fullerenes, carbon nanotubes and graphenes, our single-nanodiamond can be produced in uniform shape/size on industrial scale. Thus, the most serious problem in nanocarbon industry that persisted in the past 25 years, namely the technical failure to produce highly crystalline nanocarbons in narrow shape/size range does not exist in our diamond from the beginning. Among potential applications of the single-nanodiamond under de-velopment, this review concentrates on its highly promising role as a drug carrier, especially for therapeutic-resistant cancer. An inter-esting possibility of intercalation is proposed as the mechanism of drug transport through blood, which takes into accounts of the spontaneous formation of nanographene layer on the [111] facets, which is then extensively oxidized during oxidative soot removal process to give nanographene oxide partial surface, capable of intercalating drug molecules to prevent them from leaking and causing undesirable side effects during transportation to target malignant cells. A perspective of quantifying the drug delivery process by anticipating orders of magnitude in the number of administered detonation nanodiamond (DND) particles is suggested.

Key words: Intercalative drug delivery, Detonation nanodiamond partially covered with nanographene oxide, Number density effect, Carbon nanotechnology, mechanism of nanodiamond-nanographite phase transition, Dispersion vs agglomeration


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Eiji & 332;sawa
Articles by Dean Ho
on Google
on Google Scholar

REFERENCES
1. Enoki T, Takai K, Osipov, V, Baidakova M, Vul' AY. Nanographene and nanodiamond, new members in the nanocarbon family. Chem. Asian J. 2009; 4(6):796-804. [DOI via Crossref]    [Pubmed]   
2. Osawa E. Chemistry of single-nano diamond particles. In: Chemistry of nanocarbons. Wudl F, Nagase S, Akasaka K (Eds.), John Wiley & Sons, Oxford, pp. 413-432, 2010. [DOI via Crossref]   
3. Nanodiamonds: applications in biology and nanoscale medicine. Ho D (Ed.), Springer Science+Business Media, Norwell, pp. 1-284, 2010.
4. Mochalin V, Shenderova O, Ho D, Gogotsi Y. Recent advances in diamond nanoparticles. Nature Nanotechnol. 2012; 7(1):11-23. [DOI via Crossref]    [Pubmed]   
5. Kruger A. Beyond the shine: recent progress in applications of nanodiamond. J. Mater. Chem. 2011; 21:12571-12578. [DOI via Crossref]   
6. Huang H, Pierstorff E, Osawa E, Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007; 7(11):3305-3314. [DOI via Crossref]    [Pubmed]   
7. Chow EK, Zhang XQ, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D. Nanodiamond therapeutic delivery agents mediate enhanced chemo-resistant tumor treatment. Sci. Transl. Medicine 2011; 3(73):73ra21. [DOI via Crossref]    [Pubmed]   
8. Shimkunas R, Robinson E, Lam R, Lu S, Huang H, Osawa E, Ho D. Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomater. 2009; 30(29):5720-5728. [DOI via Crossref]    [Pubmed]   
9. Zhang XQ, Chen M, Lam R, Xu XY, Osawa E, Ho D. Polymer-functionalized nanodiamond platforms as vehicle for gene delivery. 2009; 3(9):2609-2616.
10. Chen M, Zhang XQ, Man HB, Lam R, Chow EK, Ho D. Nanodiamond vectors functionalized with polyethyleneimine for siRNA delivery. J. Phys. Chem. Lett. 2010; 1:3167-3171. [DOI via Crossref]   
11. Smith AH, Robinson EM, Zhang XQ, Chow EK, Lin Y, Osawa E, Xi J, Ho D. Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 2011; 3:2844-2848. [DOI via Crossref]    [Pubmed]   
12. Chen M, Pierstorff E, Lam R, Li SY, Huang H, Osawa E, Ho D. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 2009; 3(7):2016-2022. [DOI via Crossref]    [Pubmed]   
13. Moore L, Chow EK, Osawa E, Bishop JM, Ho D. Targeted nanodiamond-liposome hybrids enhance cancer imaging and therapy. Nano Lett. 2012 (In press).
14. Manus LM, Mastarone DJ, Waters EA, Zhang XQ, Schulz-Sikma EA, MacRenaris KW, et al. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 2010; 10(2):484-489. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
15. Huang H, Pierstorff E, Osawa E, Ho D. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano 2008; 2(2):203-212. [DOI via Crossref]    [Pubmed]   
16. Lam R, Chen M, Pierstorff E, Huang H, Osawa E, Ho D. Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2008; 2:2095-2102. [DOI via Crossref]    [Pubmed]   
17. Dreyer DR, Park SJ, Bielawski CW, Ruoff RS. The Chemistry of graphene oxide. Chem. Soc. Rev. 2010; 39:228-240. [DOI via Crossref]    [Pubmed]   
18. Osawa E. Formation mechanism of C60 under nonequilibrium and irreversible conditions. An annotation. Fullerenes, Carbon Nanotubes & Related Nanocarbons 2012; 20:299-309. [DOI via Crossref]   
19. Osawa E. Monodisperse single-nano diamond particulates. Pure & Appl. Chem. 2008; 80(7):1365-1379. [DOI via Crossref]   
20. Danilenko VV. On the history of the discovery of nanodiamond synthesis. Phys. Solid State 2004; 46(4):595-599. [DOI via Crossref]   
21. Krueger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, et al. Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 2005; 43(8):1722-1730. [DOI via Crossref]   
22. Barnard AS and Sternberg M. Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 2007; 17:6811-6819. [DOI via Crossref]   
23. Barnard AS. Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 2008; 18:4038-4041. [DOI via Crossref]   
24. Chang LY, Osawa E, Barnard AS. Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 2011; 3(3):958-962. [DOI via Crossref]    [Pubmed]   
25. DeCarli PS and Jamieson JC. Formation of diamond by explosive shock. Science 1961; 133:1821-1822. [DOI via Crossref]    [Pubmed]   
26. Hirai H and Kondo KI. Modified phases of diamond formed under shock compression and rapid quenching. Science 1991; 253:772-774. [DOI via Crossref]    [Pubmed]   
27. Raty JY, Galli G, Bostedt C, van Buuren TW, Terminello LJ. Quantum confinement and fullerene like surface reconstruction in nanodiamond. Phys. Rev. Lett. 2003; 90(3):037401. [DOI via Crossref]    [Pubmed]   
28. Purchased from Guangzhou Panyu Guanda Electromechanical Co., Ltd.
29. Bass JD, Ai X, Bagabas A, Rice PM, Topuria T, Scott JC, et al. An efficient and low-cost method for the purification of colloidal nanoparticles. Angew. Chem. Int. Ed. 2011; 50: [DOI via Crossref]    [DOI via Crossref]   
30. Williams OA, Hees J, Dieker C, Jaeger W, Kirste L, Nebel CE. Size-dependent reactivity of diamond nanoparticles. ACS Nano 2010; 4(8):4824-4830. [DOI via Crossref]    [Pubmed]   
31. Acik M, Mattevi C, Gong C, Lee G, Cho KH, Chhowalla M, Chabal YJ. The role of intercalated water in multilayered graphene oxide. ACS Nano 2010; 4(10):5861-5868. [DOI via Crossref]    [Pubmed]   
32. Cerveny S, Barroso-Bajans F, Alegria A, Colmenero J. Dynamics of water intercalation in graphite oxide. J. Phys. Chem. C 2010; 114:2604-2612. [DOI via Crossref]   
33. Talyzin AV, Sundqvist B, Szabo T, Dmitriev V. Structural breathing of a graphite oxide pressurized in basic and acidic conditions. J. Phys. Chem. Lett. 2011; 2:309-313. [DOI via Crossref]   
34. Osawa E. Five-nm bucky diamond: an emerging nanocarbon. In: AIP Proceedings (Int. Conf. Phys. Emerging Functional Materials, 2010, Bhaba Atomic Research Center, Mumbai, India), Aswal DK, Debnath AK (Eds.), No. 1313: pp. 3-7, 2011.

How to Cite this Article
Pubmed Style

Ea, Ho sD. Nanodiamond and its application to drug delivery. J Med Allied Sci. 2012; 2(2): 31-40.


Web Style

Ea, Ho sD. Nanodiamond and its application to drug delivery. https://jmas.in/?mno=210538 [Access: January 12, 2023].


AMA (American Medical Association) Style

Ea, Ho sD. Nanodiamond and its application to drug delivery. J Med Allied Sci. 2012; 2(2): 31-40.



Vancouver/ICMJE Style

Ea, Ho sD. Nanodiamond and its application to drug delivery. J Med Allied Sci. (2012), [cited January 12, 2023]; 2(2): 31-40.



Harvard Style

, E. a. . & Ho, s. D. (2012) Nanodiamond and its application to drug delivery. J Med Allied Sci, 2 (2), 31-40.



Turabian Style

, Eiji and , and sawa, Dean Ho. 2012. Nanodiamond and its application to drug delivery. Journal of Medical and Allied Sciences, 2 (2), 31-40.



Chicago Style

, Eiji and , and sawa, Dean Ho. "Nanodiamond and its application to drug delivery." Journal of Medical and Allied Sciences 2 (2012), 31-40.



MLA (The Modern Language Association) Style

, Eiji and , and sawa, Dean Ho. "Nanodiamond and its application to drug delivery." Journal of Medical and Allied Sciences 2.2 (2012), 31-40. Print.



APA (American Psychological Association) Style

, E. a. . & Ho, s. D. (2012) Nanodiamond and its application to drug delivery. Journal of Medical and Allied Sciences, 2 (2), 31-40.