E-ISSN 2231-170X | ISSN 2231-1696
 

Review Article 


Vaccinology: Reflections and the way forward

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu.

Abstract
In recent times vaccine development exploration accelerates the new strategies based on genomics, proteomics, functional genomics and glycochemistry (synthetic chemistry). The evolving Advanced technologies have the potential to identify potential targets (antigens-proteins, cell wall components, polysaccharides), production of genetically engineered proteins (antigenic or carriers) and synthesizing the complex peptidoglycans / lipopolysacchrides. The review primarily focuses on vaccines for bacteria (Mycobacterium tuberculosis); the notorious success of Mycobacterium tuberculosis a highly adapted human pathogen rests intracellular (Latent phase), interferes membrane trafficking in infected macrophages, blocks the process of phagolysosome and thereby protect the pathogen/organism against lysis. The world is witnessing an escalation of multidrug and extreme drug resistant tubercle bacilli challenging the normal therapeutic practices and increased mortality rate. The sequencing of the M. tuberculosis genome has thrown light on newer target proteins that could be used for vaccine development.

Key words: Conjugate vaccines, DNA vaccines, Humoral and cell mediated immunity, Immunization


 
ARTICLE TOOLS
Abstract
PDF Fulltext
How to cite this articleHow to cite this article
Citation Tools
Related Records
 Articles by Anubrolu Naveen
Articles by Uday Shanker Araga
Articles by Mangamoori Lakshmi Narasu
on Google
on Google Scholar

REFERENCES
1. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 2006; 4:102-112. [DOI via Crossref]    [Pubmed]   
2. Head IM, Saunders JR, Pickup RW. Microbial evolution, diversity and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol 1998; 35:1-21. [DOI via Crossref]    [Pubmed]   
3. Relman DA. New technologies, human-microbe interactions and the search for previously unrecognized pathogens. J. Infect. Dis. 2002; 186 Suppl 2:S254-258. [DOI via Crossref]    [Pubmed]   
4. Sherratt D. Bacteria rule! The start of a new era in bacterial microbiology? EMBO Rep. 2001; 2:175-176. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
5. Anderson RM. The Croonian lecture. Populations, infectious disease and immunity: A very nonlinear world. Philos Trans R Soc Lond B Biol Sci 1994; 346(1318):457-505. [DOI via Crossref]    [Pubmed]   
6. Plotkin SA and Fantini B. Vaccinia, vaccination, vaccinology. Jenner, Pasteur and their successors. Proceedings of International Meeting on the History of Vaccinology. Paris: Elsevier, 1996.
7. Janeway CA, Travers P, Shlomchik MJ. Immunobiology: the immune system in health and disease, 5th ed, Garland publishing, 2001.
8. Silvers MJ and Steptoe MM. Historical overview of vaccines. Prim. Care 2001; 28:685-695. [DOI via Crossref]   
9. WHO. The global eradication of smallpox: in "History of International Public Health" No.4. WHO, Geneva, 1980.
10. Dowdle WR, DeGourville E, Kew OM, Pallansch MA, Wood DJ. Polio Eradication: The OPV Paradox. Rev Med Virol 2003; 13(5):277-291. [DOI via Crossref]    [Pubmed]   
11. Hansson M, Nygren PA, Stahl S. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 2000 32:95-107. [DOI via Crossref]    [Pubmed]   
12. WHO. Vaccine preventable disease: Monitoring system 2005 global summary. Available at www.who.int/vaccines-documents/
13. Rappuoli R and Del Giudice G. Identification of vaccine targets. In Vaccines: From Concept to Clinic. Paoletti LC, McInnes PM (eds). Boca Raton: CRC Press, pp.1-17, 1999.
14. Ada G. The immunology of vaccination. In: Plotkin SA and Orenstein WA (eds), Vaccines, 4th ed, Philadelphia, USA: Saunders, pp. 31–45, 2003.
15. Mäkelä PH. Vaccines against Haemophilus influenza type B. In: Ala' Aldeen DAA and Hormaeche CE (eds). Molecular and clinical aspects of bacterial vaccine development, John Wiley and Sons, pp. 41–91, 1995.
16. Eldred BE, Dean AJ, McGuire TM, Nash AL. Vaccine components and constituents: Responding to consumer concerns. Med J Aust 2006; 184(4):170-175. [Pubmed]   
17. McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human Hepatitis B vaccine from recombinant yeast. Nature 1984; 307:178-180. [DOI via Crossref]    [Pubmed]   
18. Whalen RG. DNA vaccines for emerging infectious dis-eases: what if? Emerg. Infect. Dis. 1996; 2:168-175. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
19. Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Deck RR, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 1996; 2:893-898. [DOI via Crossref]    [Pubmed]   
20. Tuteja R. DNA vaccines: A ray of hope. Crit Rev. Bio-chem. Mol. Biol. 1999; 34:1-24. [DOI via Crossref]    [Pubmed]   
21. Sheikh NA and Morrow WJ. Guns, genes and spleen: A coming of age for rational vaccine design. Methods 2003; 31(3):183-192. [DOI via Crossref]   
22. Delcayre A, Peake JS, White DJ, Yuan S, McDonald MK, Liang A, Tan PL, Watson JD. A genome-based functional screening approach to vaccine development that combines in vitro assays and DNA immunization. Vaccine 2003; 21(23):3259-3264. [DOI via Crossref]   
23. Wack A and Rappuoli R. Vaccinology at the beginning of the 21st century. Curr. Opin. Immunol. 2005; 17:411-418. [DOI via Crossref]    [Pubmed]   
24. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, et al. Identification of vaccine candidates against serogroup B Meningococcus by whole-genome sequencing. Science 2000; 287:1816-1820. [DOI via Crossref]    [Pubmed]   
25. Serruto D, du-Bobie J, Capecchi B, Rappuoli R, Pizza M, Masignani V. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J. Biotechnol. 2004; 113:15-32. [DOI via Crossref]    [Pubmed]   
26. Scarselli M, Giuliani MM, du-Bobie J, Pizza M, Rappuoli R. The impact of genomics on vaccine design. Trends Bio-technol. 2005; 23:84-91. [DOI via Crossref]    [Pubmed]   
27. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol 2000; 3(5):445-450. [DOI via Crossref]   
28. Mora M, Veggi D, Santini L, Pizza M, Rappuoli R. Re-verse vaccinology. Drug Discov. Today 2003; 8:459-464. [DOI via Crossref]   
29. Du-Bobie J, Capecchi B, Serruto D, Rappuoli R, Pizza M. Two years into reverse vaccinology. Vaccine 2003; 21:605-610. [DOI via Crossref]   
30. Nguyen TK, Koets AP, Santema WJ, van Eden W, Rutten VP, van Rhijn I. The Mycobacterial glycolipid glucose monomycolate induces a memory T cell response comparable to a model protein antigen and Non B cell response upon experimental vaccination of cattle. Vaccine 2009; 27(35):4818-4825. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
31. de Groot AS, Bosma A, Chinai N, Frost J, Jesdale BM, Gonzalez MA, Martin W, Saint-Aubin C. From genome to vaccine: In silico predictions, ex vivo verification. Vaccine 2001; 19(31): 4385-4395. [DOI via Crossref]   
32. Masignani V, Balducci E, Serruto D, Veggi D, Arico B, Comanducci M, Pizza M, Rappuoli R. In silico identification of novel bacterial ADP-ribosyl transferases. Int. J. Med. Microbiol. 2004; 293:471-478. [DOI via Crossref]    [Pubmed]   
33. Meinke A, Henics T, Hanner M, Minh DB, Nagy E. Antigenome technology: A novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 2005; 23:2035-2041. [DOI via Crossref]    [Pubmed]   
34. Salomon J and Flower DR. Predicting class II MHC-peptide binding: A kernel based approach using similarity scores. BMC Bioinformatics 2006; 7:501. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
35. Pucci MJ. Use of genomics to select antibacterial targets. Biochem. Pharmacol. 2006; 71:1066-1072. [DOI via Crossref]    [Pubmed]   
36. Glickman MS and Jacobs WR Jr. Microbial pathogenesis of Mycobacterium tuberculosis: Dawn of a discipline. Cell 2001; 104(4):477-485. [DOI via Crossref]   
37. Young DB, Gideon HP and Wilkinson RJ. Eliminating la-tent tuberculosis. Trends Microbiol 2009; 17(5):183-188. [DOI via Crossref]    [Pubmed]   
38. Shah NS, Wright A, Bai GH, Barrera L, Boulahbal F, Martin-Casabona N, et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 2007; 13(3):380-387. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
39. Migliori GB, Besozzi G, Girardi E, Kliiman K, Lange C, Toungoussova OS, et al. Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J 2007; 30(4):623-626 [DOI via Crossref]    [Pubmed]   
40. Shah NS, Richardson J, Moodley P, Moodley S, Babaria P, Ramtahal M, et al. Increasing drug resistance in extensively drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2011; 17(3):510-513. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
41. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 1999; 282(7):677-686. [DOI via Crossref]    [Pubmed]   
42. Hanekom WA, Mendillo M, Manca C, Haslett PA, Siddiqui MR, Barry C III, Kaplan G. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 2003; 188(2):257-266. [DOI via Crossref]    [Pubmed]   
43. Hmama Z, Gabathuler R, Jefferies WA, de Jong G, Reiner NE. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J Immunol 1998; 161(9):4882-4893. [Pubmed]   
44. Mustafa T, Phyu S, Nilsen R, Bjune G, Jonsson R. Increased expression of Fas ligand on Mycobacterium tuberculosis infected macrophages: A potential novel mechanism of immune evasion by Mycobacterium tuberculosis? Inflammation 1999; 23(6): 507-521. [Pubmed]   
45. Pancholi P, Mirza A, Schauf V, Steinman RM, Bhardwaj N. Presentation of mycobacterial antigens by human dendritic cells: Lack of transfer from infected macrophages. Infect Immun 1993; 61(12):5326-5332. [Pubmed]    [PMC Free Fulltext]   
46. Stenger S, Niazi KR, Modlin RL. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 1998; 161(7):3582-3588. [Pubmed]   
47. Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163(7):3898-3906. [Pubmed]   
48. Aaron L, Saadoun D, Calatroni I, Launay O, Memain N, Vincent V, et al. Tuberculosis in HIV-infected patients: A comprehensive review. Clin Microbiol Infect 2004; 10(5):388-398. [DOI via Crossref]    [Pubmed]   
49. Corbett EL, Marston B, Churchyard GJ, de Cock KM. Tuberculosis in Sub-Saharan Africa: Opportunities, challenges and change in the era of antiretroviral treatment. Lancet 2006; 367(9514):926-937. [DOI via Crossref]   
50. Lawn SD and Zumla AI. Tuberculosis. Lancet 2011; 378(9785):57-72. [DOI via Crossref]   
51. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995; 346(8986):1339-1345. [DOI via Crossref]   
52. Andersen P and Doherty TM. The success and failure of BCG - Implications for a novel Tuberculosis vaccine. Nat Rev Microbiol 2005; 3(8):656-662. [DOI via Crossref]    [Pubmed]   
53. Skeiky YA and Sadoff JC. Advances in Tuberculosis vaccine strategies. Nat Rev Microbiol 2006; 4(6):469-476. [DOI via Crossref]    [Pubmed]   
54. Brennan MJ, Clagett B, Fitzgerald H, Chen V, Williams A, Izzo AA, Barker LF. Preclinical evidence for implementing a prime-boost vaccine strategy for Tuberculosis. Vaccine 2012; 30(18):2811-2823. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
55. Kaufmann SH. Future vaccination strategies against tuberculosis: Thinking outside the box. Immunity 2010; 33(4):567-577. [DOI via Crossref]    [Pubmed]   
56. Kaufmann SH. Learning from natural infection for rational tuberculosis vaccine design: from basic science to translational research. Hum Vaccine 2010; 6(8):614-618. [DOI via Crossref]    [Pubmed]   
57. Bastos RG, Borsuk S, Seixas FK, Dellagostin OA. Recombinant Mycobacterium Bovis BCG. Vaccine 2009; 27(47):6495-6503. [DOI via Crossref]    [Pubmed]   
58. Horowitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant Bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci 2000; 97(25):13853-13858. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
59. Orme IM. New vaccines against Tuberculosis. The status of current research. Infect Dis Clin North Am 1999; 13(1):169-185. [DOI via Crossref]   
60. Jackson M, Phalen SW, Lagranderie M, Ensergueix D, Chavarot P, Marchal G, McMurray DN, Gicquel B, Guilhot C. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect Immun 1999; 67(6):2867-2873. [Pubmed]    [PMC Free Fulltext]   
61. Sampson SL, Mansfield KG, Carville A, Magee DM, Quitu-gua T, Howerth EW, Bloom BR, Hondalus MK. Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate. Vaccine 2011; 29(30):4839-4847. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
62. Okada M, Kita Y, Nakajima T, Hashimoto S, Nakatani H, Nishimatsu S, et al. The study of novel DNA vaccines against tuberculosis: Induction of pathogenspecific CTL in the mouse and monkey models of tuberculosis. Hum Vaccin Immunother 2012; 9(3).
63. Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Do-herty TM, Andersen P. Exchanging Esat6 with Tb10.4 in an Ag85b fusion molecule-based Tuberculosis subunit vaccine: Efficient protection and Esat6-based sensitive monitoring of vaccine efficacy. J Immunol 2005; 174(10):6332-6339. [DOI via Crossref]    [Pubmed]   
64. Granoff DM, Gupta RK, Belshe RB, Anderson EL. Induction of immunologic refractoriness in adults by Meningococcal C polysaccharide vaccination. J Infect Dis 1998; 178(3):870-874. [DOI via Crossref]    [Pubmed]   
65. Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC, et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by co-administration with the Mycobacterium tuberculosis 72-Kilodalton fusion polyprotein Mtb72f in M. tuberculosis-infected guinea pigs. Infect Immun 2004; 72(11):6622-6632. [DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   
66. Camus JC, Pryor MJ, Medigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37rv. Microbiology 2002; 148(10):2967-2973. [DOI via Crossref]    [Pubmed]   
67. Cole ST and Barrell BG. Analysis of the genome of Mycobacterium tuberculosis H37rv. Novartis Found Symp 1998; 217:160-172; discussion 172-177. [DOI via Crossref]    [Pubmed]   

How to Cite this Article
Pubmed Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. Vaccinology: Reflections and the way forward. J Med Allied Sci. 2014; 4(1): 45-53.


Web Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. Vaccinology: Reflections and the way forward. https://jmas.in/?mno=211778 [Access: January 12, 2023].


AMA (American Medical Association) Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. Vaccinology: Reflections and the way forward. J Med Allied Sci. 2014; 4(1): 45-53.



Vancouver/ICMJE Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. Vaccinology: Reflections and the way forward. J Med Allied Sci. (2014), [cited January 12, 2023]; 4(1): 45-53.



Harvard Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu (2014) Vaccinology: Reflections and the way forward. J Med Allied Sci, 4 (1), 45-53.



Turabian Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. 2014. Vaccinology: Reflections and the way forward. Journal of Medical and Allied Sciences, 4 (1), 45-53.



Chicago Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. "Vaccinology: Reflections and the way forward." Journal of Medical and Allied Sciences 4 (2014), 45-53.



MLA (The Modern Language Association) Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu. "Vaccinology: Reflections and the way forward." Journal of Medical and Allied Sciences 4.1 (2014), 45-53. Print.



APA (American Psychological Association) Style

Anubrolu Naveen, Uday Shanker Araga, Mangamoori Lakshmi Narasu (2014) Vaccinology: Reflections and the way forward. Journal of Medical and Allied Sciences, 4 (1), 45-53.