1. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 2006; 4:102-112. [DOI via Crossref] [Pubmed] |
|
2. Head IM, Saunders JR, Pickup RW. Microbial evolution, diversity and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol 1998; 35:1-21. [DOI via Crossref] [Pubmed] |
|
3. Relman DA. New technologies, human-microbe interactions and the search for previously unrecognized pathogens. J. Infect. Dis. 2002; 186 Suppl 2:S254-258. [DOI via Crossref] [Pubmed] |
|
4. Sherratt D. Bacteria rule! The start of a new era in bacterial microbiology? EMBO Rep. 2001; 2:175-176. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
5. Anderson RM. The Croonian lecture. Populations, infectious disease and immunity: A very nonlinear world. Philos Trans R Soc Lond B Biol Sci 1994; 346(1318):457-505. [DOI via Crossref] [Pubmed] |
|
6. Plotkin SA and Fantini B. Vaccinia, vaccination, vaccinology. Jenner, Pasteur and their successors. Proceedings of International Meeting on the History of Vaccinology. Paris: Elsevier, 1996. |
|
7. Janeway CA, Travers P, Shlomchik MJ. Immunobiology: the immune system in health and disease, 5th ed, Garland publishing, 2001. |
|
8. Silvers MJ and Steptoe MM. Historical overview of vaccines. Prim. Care 2001; 28:685-695. [DOI via Crossref] |
|
9. WHO. The global eradication of smallpox: in "History of International Public Health" No.4. WHO, Geneva, 1980. |
|
10. Dowdle WR, DeGourville E, Kew OM, Pallansch MA, Wood DJ. Polio Eradication: The OPV Paradox. Rev Med Virol 2003; 13(5):277-291. [DOI via Crossref] [Pubmed] |
|
11. Hansson M, Nygren PA, Stahl S. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 2000 32:95-107. [DOI via Crossref] [Pubmed] |
|
12. WHO. Vaccine preventable disease: Monitoring system 2005 global summary. Available at www.who.int/vaccines-documents/ |
|
13. Rappuoli R and Del Giudice G. Identification of vaccine targets. In Vaccines: From Concept to Clinic. Paoletti LC, McInnes PM (eds). Boca Raton: CRC Press, pp.1-17, 1999. |
|
14. Ada G. The immunology of vaccination. In: Plotkin SA and Orenstein WA (eds), Vaccines, 4th ed, Philadelphia, USA: Saunders, pp. 31–45, 2003. |
|
15. Mäkelä PH. Vaccines against Haemophilus influenza type B. In: Ala' Aldeen DAA and Hormaeche CE (eds). Molecular and clinical aspects of bacterial vaccine development, John Wiley and Sons, pp. 41–91, 1995. |
|
16. Eldred BE, Dean AJ, McGuire TM, Nash AL. Vaccine components and constituents: Responding to consumer concerns. Med J Aust 2006; 184(4):170-175. [Pubmed] |
|
17. McAleer WJ, Buynak EB, Maigetter RZ, Wampler DE, Miller WJ, Hilleman MR. Human Hepatitis B vaccine from recombinant yeast. Nature 1984; 307:178-180. [DOI via Crossref] [Pubmed] |
|
18. Whalen RG. DNA vaccines for emerging infectious dis-eases: what if? Emerg. Infect. Dis. 1996; 2:168-175. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
19. Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Deck RR, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 1996; 2:893-898. [DOI via Crossref] [Pubmed] |
|
20. Tuteja R. DNA vaccines: A ray of hope. Crit Rev. Bio-chem. Mol. Biol. 1999; 34:1-24. [DOI via Crossref] [Pubmed] |
|
21. Sheikh NA and Morrow WJ. Guns, genes and spleen: A coming of age for rational vaccine design. Methods 2003; 31(3):183-192. [DOI via Crossref] |
|
22. Delcayre A, Peake JS, White DJ, Yuan S, McDonald MK, Liang A, Tan PL, Watson JD. A genome-based functional screening approach to vaccine development that combines in vitro assays and DNA immunization. Vaccine 2003; 21(23):3259-3264. [DOI via Crossref] |
|
23. Wack A and Rappuoli R. Vaccinology at the beginning of the 21st century. Curr. Opin. Immunol. 2005; 17:411-418. [DOI via Crossref] [Pubmed] |
|
24. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, Comanducci M, et al. Identification of vaccine candidates against serogroup B Meningococcus by whole-genome sequencing. Science 2000; 287:1816-1820. [DOI via Crossref] [Pubmed] |
|
25. Serruto D, du-Bobie J, Capecchi B, Rappuoli R, Pizza M, Masignani V. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. J. Biotechnol. 2004; 113:15-32. [DOI via Crossref] [Pubmed] |
|
26. Scarselli M, Giuliani MM, du-Bobie J, Pizza M, Rappuoli R. The impact of genomics on vaccine design. Trends Bio-technol. 2005; 23:84-91. [DOI via Crossref] [Pubmed] |
|
27. Rappuoli R. Reverse vaccinology. Curr Opin Microbiol 2000; 3(5):445-450. [DOI via Crossref] |
|
28. Mora M, Veggi D, Santini L, Pizza M, Rappuoli R. Re-verse vaccinology. Drug Discov. Today 2003; 8:459-464. [DOI via Crossref] |
|
29. Du-Bobie J, Capecchi B, Serruto D, Rappuoli R, Pizza M. Two years into reverse vaccinology. Vaccine 2003; 21:605-610. [DOI via Crossref] |
|
30. Nguyen TK, Koets AP, Santema WJ, van Eden W, Rutten VP, van Rhijn I. The Mycobacterial glycolipid glucose monomycolate induces a memory T cell response comparable to a model protein antigen and Non B cell response upon experimental vaccination of cattle. Vaccine 2009; 27(35):4818-4825. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
31. de Groot AS, Bosma A, Chinai N, Frost J, Jesdale BM, Gonzalez MA, Martin W, Saint-Aubin C. From genome to vaccine: In silico predictions, ex vivo verification. Vaccine 2001; 19(31): 4385-4395. [DOI via Crossref] |
|
32. Masignani V, Balducci E, Serruto D, Veggi D, Arico B, Comanducci M, Pizza M, Rappuoli R. In silico identification of novel bacterial ADP-ribosyl transferases. Int. J. Med. Microbiol. 2004; 293:471-478. [DOI via Crossref] [Pubmed] |
|
33. Meinke A, Henics T, Hanner M, Minh DB, Nagy E. Antigenome technology: A novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 2005; 23:2035-2041. [DOI via Crossref] [Pubmed] |
|
34. Salomon J and Flower DR. Predicting class II MHC-peptide binding: A kernel based approach using similarity scores. BMC Bioinformatics 2006; 7:501. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
35. Pucci MJ. Use of genomics to select antibacterial targets. Biochem. Pharmacol. 2006; 71:1066-1072. [DOI via Crossref] [Pubmed] |
|
36. Glickman MS and Jacobs WR Jr. Microbial pathogenesis of Mycobacterium tuberculosis: Dawn of a discipline. Cell 2001; 104(4):477-485. [DOI via Crossref] |
|
37. Young DB, Gideon HP and Wilkinson RJ. Eliminating la-tent tuberculosis. Trends Microbiol 2009; 17(5):183-188. [DOI via Crossref] [Pubmed] |
|
38. Shah NS, Wright A, Bai GH, Barrera L, Boulahbal F, Martin-Casabona N, et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg Infect Dis 2007; 13(3):380-387. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
39. Migliori GB, Besozzi G, Girardi E, Kliiman K, Lange C, Toungoussova OS, et al. Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J 2007; 30(4):623-626 [DOI via Crossref] [Pubmed] |
|
40. Shah NS, Richardson J, Moodley P, Moodley S, Babaria P, Ramtahal M, et al. Increasing drug resistance in extensively drug-resistant tuberculosis, South Africa. Emerg Infect Dis 2011; 17(3):510-513. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
41. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global burden of tuberculosis: Estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 1999; 282(7):677-686. [DOI via Crossref] [Pubmed] |
|
42. Hanekom WA, Mendillo M, Manca C, Haslett PA, Siddiqui MR, Barry C III, Kaplan G. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 2003; 188(2):257-266. [DOI via Crossref] [Pubmed] |
|
43. Hmama Z, Gabathuler R, Jefferies WA, de Jong G, Reiner NE. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J Immunol 1998; 161(9):4882-4893. [Pubmed] |
|
44. Mustafa T, Phyu S, Nilsen R, Bjune G, Jonsson R. Increased expression of Fas ligand on Mycobacterium tuberculosis infected macrophages: A potential novel mechanism of immune evasion by Mycobacterium tuberculosis? Inflammation 1999; 23(6): 507-521. [Pubmed] |
|
45. Pancholi P, Mirza A, Schauf V, Steinman RM, Bhardwaj N. Presentation of mycobacterial antigens by human dendritic cells: Lack of transfer from infected macrophages. Infect Immun 1993; 61(12):5326-5332. [Pubmed] [PMC Free Fulltext] |
|
46. Stenger S, Niazi KR, Modlin RL. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 1998; 161(7):3582-3588. [Pubmed] |
|
47. Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 1999; 163(7):3898-3906. [Pubmed] |
|
48. Aaron L, Saadoun D, Calatroni I, Launay O, Memain N, Vincent V, et al. Tuberculosis in HIV-infected patients: A comprehensive review. Clin Microbiol Infect 2004; 10(5):388-398. [DOI via Crossref] [Pubmed] |
|
49. Corbett EL, Marston B, Churchyard GJ, de Cock KM. Tuberculosis in Sub-Saharan Africa: Opportunities, challenges and change in the era of antiretroviral treatment. Lancet 2006; 367(9514):926-937. [DOI via Crossref] |
|
50. Lawn SD and Zumla AI. Tuberculosis. Lancet 2011; 378(9785):57-72. [DOI via Crossref] |
|
51. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995; 346(8986):1339-1345. [DOI via Crossref] |
|
52. Andersen P and Doherty TM. The success and failure of BCG - Implications for a novel Tuberculosis vaccine. Nat Rev Microbiol 2005; 3(8):656-662. [DOI via Crossref] [Pubmed] |
|
53. Skeiky YA and Sadoff JC. Advances in Tuberculosis vaccine strategies. Nat Rev Microbiol 2006; 4(6):469-476. [DOI via Crossref] [Pubmed] |
|
54. Brennan MJ, Clagett B, Fitzgerald H, Chen V, Williams A, Izzo AA, Barker LF. Preclinical evidence for implementing a prime-boost vaccine strategy for Tuberculosis. Vaccine 2012; 30(18):2811-2823. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
55. Kaufmann SH. Future vaccination strategies against tuberculosis: Thinking outside the box. Immunity 2010; 33(4):567-577. [DOI via Crossref] [Pubmed] |
|
56. Kaufmann SH. Learning from natural infection for rational tuberculosis vaccine design: from basic science to translational research. Hum Vaccine 2010; 6(8):614-618. [DOI via Crossref] [Pubmed] |
|
57. Bastos RG, Borsuk S, Seixas FK, Dellagostin OA. Recombinant Mycobacterium Bovis BCG. Vaccine 2009; 27(47):6495-6503. [DOI via Crossref] [Pubmed] |
|
58. Horowitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant Bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci 2000; 97(25):13853-13858. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
59. Orme IM. New vaccines against Tuberculosis. The status of current research. Infect Dis Clin North Am 1999; 13(1):169-185. [DOI via Crossref] |
|
60. Jackson M, Phalen SW, Lagranderie M, Ensergueix D, Chavarot P, Marchal G, McMurray DN, Gicquel B, Guilhot C. Persistence and protective efficacy of a Mycobacterium tuberculosis auxotroph vaccine. Infect Immun 1999; 67(6):2867-2873. [Pubmed] [PMC Free Fulltext] |
|
61. Sampson SL, Mansfield KG, Carville A, Magee DM, Quitu-gua T, Howerth EW, Bloom BR, Hondalus MK. Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate. Vaccine 2011; 29(30):4839-4847. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
62. Okada M, Kita Y, Nakajima T, Hashimoto S, Nakatani H, Nishimatsu S, et al. The study of novel DNA vaccines against tuberculosis: Induction of pathogenspecific CTL in the mouse and monkey models of tuberculosis. Hum Vaccin Immunother 2012; 9(3). |
|
63. Dietrich J, Aagaard C, Leah R, Olsen AW, Stryhn A, Do-herty TM, Andersen P. Exchanging Esat6 with Tb10.4 in an Ag85b fusion molecule-based Tuberculosis subunit vaccine: Efficient protection and Esat6-based sensitive monitoring of vaccine efficacy. J Immunol 2005; 174(10):6332-6339. [DOI via Crossref] [Pubmed] |
|
64. Granoff DM, Gupta RK, Belshe RB, Anderson EL. Induction of immunologic refractoriness in adults by Meningococcal C polysaccharide vaccination. J Infect Dis 1998; 178(3):870-874. [DOI via Crossref] [Pubmed] |
|
65. Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC, et al. The protective effect of the Mycobacterium bovis BCG vaccine is increased by co-administration with the Mycobacterium tuberculosis 72-Kilodalton fusion polyprotein Mtb72f in M. tuberculosis-infected guinea pigs. Infect Immun 2004; 72(11):6622-6632. [DOI via Crossref] [Pubmed] [PMC Free Fulltext] |
|
66. Camus JC, Pryor MJ, Medigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37rv. Microbiology 2002; 148(10):2967-2973. [DOI via Crossref] [Pubmed] |
|
67. Cole ST and Barrell BG. Analysis of the genome of Mycobacterium tuberculosis H37rv. Novartis Found Symp 1998; 217:160-172; discussion 172-177. [DOI via Crossref] [Pubmed] |
|